ASTRO: Supporting Composition and Execution of Web Services

M.Trainotti M.Pistore G.Calabrese G.Zacco G.Lucchese
F.Barbon P.Bertoli P.Traverso
University of Trento ITC-Irst

Via Sommarive 14
38050 Povo (Trento) - Italy

Abstract

Web services are rapidly emerging as the reference
paradigm for the interaction and coordination of dis-
tributed business processes. In several research pa-
pers we have shown how advanced automated planning
techniques can be exploited to automatically compose
web services, and to synthesize monitoring components
that control their execution. In this demo we show how
these techniques have been implemented in the ASTRO
toolset (http://www.astroproject.org), a set of tools that
extend existing platforms for web service design and
execution with automated composition and execution
monitoring functionalities.

Introduction

Web services are rapidly emerging as the reference
paradigm for the interaction and coordination of dis-
tributed business processes. The ability to automati-
cally plan the composition of web services, and to mon-
itor their execution, is therefore an essential step toward
the real usage of web services.

In previous works (1; 2; 3), we have shown how au-
tomated planning techniques based on the \Planning
via Model Checking" paradigm can e®ectively support
these functionalities. More precisely, the algorithms
proposed in (1; 2; 3) are based on web service speci ca-
tions described in BPEL4WS, a standard language that
can be used both for describing existing web services in
terms of their interfaces (i.e., of the operations that are
needed to interact with them) and for de ning the ex-
ecutable code that implements composite services.

Automated web service composition starts from the
description of a number of protocols de ning avail-
able external services (expressed as BPEL4WS speci -
cations), and a \business requirement” for a new com-
posed process (i.e., the goal that should be satis ed by
the new service, expressed in a proper goal language).
Given this, the planner must synthesize automatically
the code that implements the internal process that, ex-
ploiting the services of the external partners, achieves

“This work is partially funded by the MIUR-FIRB
project RBNE0195K5, \Knowledge Level Automated Soft-
ware Engineering”, and by the MIUR-PRIN 2004 project
\Advanced Arti cial Intelligence Systems for Web Services".

Via Sommarive 18
38050 Povo (Trento) - Italy

the business requirement. This code is then emitted as
executable BPELAWS code.

The automated synthesis techniques provided by the
\Planning via Model Checking" framework can be also
exploited to generate process monitors, i.e., pieces of
code that detect and signal whether the external part-
ners behave consistently with the specied protocols.
This is vital to detect unpredictable run-time misbehav-
iors (such as those that may originate by dynamic mod-

i cations of the partners' protocols), or other events in
the executions of the web services that need to be re-
ported and analyzed.

Notice that these problems require to deal with non-
determinism (since the behavior of external services
cannot be foreseen a priori), partial observability (since
their status is opaque to the composed service), and ex-
tended goals (since realistic business requirements spec-
ify complex expected behaviors rather than just nal
states). By tackling the problem of composing and
monitoring web services, we have shown the capabili-
ties of the \Planning via Model Checking" approach in
realizing such a complex planning task.

In this demo we show how these techniques can
extend existing commercial platforms for web service
design and execution. More precisely, we describe
the ASTRO toolset (http://www.astroproject.org),
which implements automated composition and
monitor generation functionalities as extensions of
the Active WebFlow platform. Active WebFlow
(http://www.activebpel.org/) is a commercial tool for
designing and developing BPEL4WS processes which
is based on the Eclipse platform. It also provides an
open-source BPEL4WS execution engine, called Active
BPEL. By implementing automated composition and
monitoring within Active WebFlow, these advanced
functionalities can be combined with the other \stan-
dard" functionalities provided by the platform (such
as inspecting BPEL4AWS code, writing or modifying
business processes, deploying these processes and
executing them) and become integral part of the life
cycle of business process design and execution.

The rest of the paper is structured as follows. We
start with the description of a service composition sce-
nario which is used to illustrate the proposed approach.

Then we describe the architecture and the function-
alities of the ASTRO toolset. Finally, we present a
demonstration of the application of this toolset to the
reference composition scenario.

A service composition scenario

The demo is based on a classical web service composi-
tion problem, namely that of the Virtual Travel Agency
(VTA). It consists in providing a combined °ight and
hotel booking service by composing two separate, inde-
pendent existing services: a Flight booking service, and
a Hotel booking service.

The Hotel booking service becomes active upon a re-
guest for a room in a given location (e.g., Paris) for a
given period of time. In the case the booking is not pos-
sible (i.e., there are no available rooms), this is signaled
to the request applicant, and the protocol terminates
with failure. Otherwise, the applicant is noti ed with
information about the hotel (e.g., Hilton), cost of the
room, etc. and the protocol stops waiting for either a
positive or negative acknowledgment. In the “rst case,
an agreement has been reached and the room is booked.
In the latter case, the interaction terminates with fail-
ure.

The protocol provided by the Flight booking service
is similar. It starts upon a request for °ights that guar-
antee to stay in a given location (e.g., Paris) for a given
period of time. This might not be possible, in which
case the applicant is noti ed, and the protocol termi-
nates failing. Otherwise, information on the °ights (car-
rier, cost, schedule...) are computed and returned to the
applicant. The protocol suspends for either a positive
or negative acknowledgment, terminating (with success
or failure resp.) upon its reception.

The expected protocol that the user will execute
when interacting with the VTA goes as follows. The
user sends a request to stay in a given location during a
given period of time, and expects either a negative an-
swer if this is not possible (in which case the protocol
terminates, failing), or an o®er indicating hotel, °ights
and cost of the trip. At this time, the user may either
accept or refuse the o®er, terminating its interaction in
both cases.

Of course several di®erent interaction sequences are
possible with these services; e.g., in aominal scenario,
none of the services answers negatively to a request; in
non-nominal scenarios, unavailability of suitable °ights
or rooms, as well as user refusals, may make it impossi-
ble to reach an agreement for the trip. Taking this into
account, the business requirement for the composed ser-
vice is composed of two subgoals. The \nominal" sub-
goal consists in reaching the agreement on °ights and
room. This includes enforcing that the data communi-
cated to the various processes are mutually consistent;
e.g., the number of nights booked in the hotel depends
on the schedule of the selected °ights. The \recov-
ery" subgoal consists in ensuring that every partner has
rolled back from previous pending requests, and must

be only pursued when the nominal subgoal cannot be
achieved anymore.

By automated composition of the VTA process, we
mean the automated generation of the code that has
to be executed on the VTA server, so that requests
from the user are answered combining the Flight and
Hotel services in a suitable way. This composition has
to implement the two sub-goals described above.

After the VTA process has been generated, its execu-
tions must be monitored, in order to detect problems in
the interactions with the other partners participating to
the scenario. Properties to be monitored include \cor-
rectness" checks (e.g., the partners obey the declared
protocols; the °ight schedules are compatible with the
requests...). It is also possible to monitor \business"
properties, such as the fact that, when an o®er for a
trip is sent to the user, this o®er gets accepted or not.

The ASTRO toolset

This section presents a general overview of the ASTRO
toolset. At the current stage, it consists of the following
tools: WS-gen WS-mon WS-consoleand WS-animatot
WS-genis responsible for generating the automated
composition. It consists in a back-end layer and a
front-end layer. The back-end layer takes as input the
BPEL4WS speci cations of the interaction protocols
that the composite service has to implement, a \chore-
ographic" "Te describing the connections between the
composition's partners, and a goal Te de ning the com-
position requirement. It consists of two applications
(see Fig.1): BPELTranslator converts the BPEL4AWS
speci cation Tes and the choreography e in an inter-
mediate (.smv) e which is adequate for representing
\Planning via Model Checking" problems; WSYNTH
takes as input the problem domain, computes the plan
which fulTls the requirements, and emits the plan in
BPEL4WS format. The front-end (see Fig.2) is re-

BPEL

EPELTranslakor
BEEL /

ETEL
»| oo

{4ES)
/

chor eography

Fig. 1: WS-gen architecture

sponsible for controlling the composition process and
for managing the generated BPEL4WS speci cation; it
has been implemented as an Eclipse plugin, and is hence
integrated in the Active WebFlow environment.
WS-monis responsible for generats the Java code im-
plements the monitors for the composed process and
deploying them to the monitor framework. Similar to
WS-gen it consists in a back-end layer and a front-end

s%ay @ S5se MEO M & B MO

Fig. 2: WS-gen front end

layer. The back-end takes as input BPEL4WS speci -
cations and a \choreographic" "Te, while the goal Te is
replaced by a Te specifying the properties to by moni-
tored. The back-end layer consists in three applications
(see Fig.3): BPELTranslator which is in common with
WS-gen converts the BPEL4AWS speci cation Tes and
the choreography e in a .smv “Te which describes the
problem domain; WMON takes as input the problem
domain, computes the plan which ful'Tls the monitor-
ing requirements, and emits this plan in Java format;
and the DEPLOYERcompiles the Java class and deploy
them to the monitor framework. The front-end (see

S
g

propercy

Fig. 3: WS-mon architecture

Fig.4), which is responsible for controlling the monitor

generation process, has been implemented as an Eclipse

plugin, and is hence integrated in the Active WebFlow
environment.

The run-time monitor framework is responsible for
executing the monitors associated to a given process
every time an instance of that process is executed. It is
also responsible for reporting the status of these mon-
itors to the user in a convenient way. It consists of a
back-end layer and a front-end layer (see Fig.5). The
back-end layer has been implemented as an extension
of the Active BPEL execution engine; the main goal is
to sni® the input/output messages directed to the pro-
cess that has to be monitored and to forward them to
the Java monitors instances. The front-end implemen-
tation, WS-console extends the Active BPEL admin-
istration console in order to present the status of the

10knowHoes

Sest @ cSse EEO M @ B LR

Fig. 4: WS-mon front end

TS-console

BPEL4TE

EPEL4TE
Exscution
Ingine
=

Fig. 5: Monitor framework architecture

monitors associated with each process instance. In this
way, violations of the monitored properties are easy to
be checked by the user (see Fig.6).

5%
Fllasma] & - [

wavaw ol

SRe% @ =He®> N0 M B B8 @l a7, 1757

Fig. 6: WS-console

Finally, WS-animator (see Fig.7) is another Eclipse
plugin, which gives the user the possibility to \execute"
the composite process (in our case, the VTA). More
precisely, it allows the user to play the roles of the actors

interacting with the composite process, while the Active
WebFlow engine executes it.

e &

Fig. 7: WS-animator

B8 S

The DEMO

In this section we describe a demonstration of the ca-
pabilities of the ASTRO toolset. The demo consists of
a set of steps corresponding to the execution of service
composition and a monitor synthesis task (see Fig.8).

Step 1. Within Active WebFlow, the user selects
the projects (Flight, Hotel, VTA) which are part of
the composition scenario. These projects contain the
WSDL and the abstract BPEL4AWS Tes describing the
interfaces of the existing web services (and the protocol
that the VTA has to expose to the end user). Moreover,
the VTA project contains the .goal, .mon and .chor con-
“guration “Tes; those Tes de ne the requirements and
choreography for the process and monitor compaosition.

Step 2. WS-genis invoked. After the generation is
terminated, the left panel gives a glimpse of the gener-
ated “Tes; in particular, the composed process VTA.bpel
is ready to be deployed to the BPEL4WS execution en-
gine.

Step 3. The composed process is deployed into the
Active BPEL execution engine via the Active WebFlow
console; now the composed process is ready to receive
the client requests.

Step 4. After the composition and deployment of
the BPELAWS process, WS-mon is used to generate
the associated monitors. The left panel gives a glimpse
of the generated Tes, and in particular the Java les
implementing the monitor processes.

Step 5. To test the generated service, User, Flight
and Hotel processes are executed WS-animator while
the composed process is executed in Active BPEL ex-
ecution engine. This con guration gives the possibility
to test the composed process controlling the execution
of the partner processes.

Step 6. After the execution of a nominal scenario
within WS-animator all the services end in a SUCCESS
state. In this scenario, the user has request an o®er to

the composite service for a °ight and a hotel specify-
ing a date and a location. The Flight has received the
°ight request from the composite service, checked for its
availability and sent back the °ight number and date.
The Hotel has received the request for an hotel reser-
vation for a date (the one sent by the Flight) from the
composite service, checked for its availability and sent
back the hotel. The user has received the o®er from the
composite service and has accepted it.

Step 7. WS-consolepresents the states of the moni-
tors for the instance of the VTA service corresponding
to the nominal scenario presented above. All the mon-
itor instances are valid.

Step 8. After the execution of a scenario where the
User refuses a travel o®erWS-animator shows all the
services terminated in a FAIL state. In this scenario,
the user has requested an o®er to the composite service
for a °ight and a hotel specifying a date and a location.
The Flight has received the °ight request from the com-
posite service, checked for its availability and sent back
the °ight number and date. The Hotel has received the
request for an hotel reservation for a date (the one sent
by the Flight) from the composite service, checked for
its availability and sent back the hotel. The user has
received the o®er from the composite service and has
denied it. The denial has been forwarded to Flight and
Hotel.

Step 9. WS-consolegresents the states of the moni-
tors for the instance of the VTA service of the scenario
where the user refuses the travel o®er. This scenario vi-
olates one of the monitored properties, namely \if both
Flight and Hotel make an o®er, the user will accept it".
This violation is reported in WS-console

References

[1] Pistore, M.; Barbon, F.; Bertoli, P.; Shaparau. D.; and
Traverso, P. 2004. Planning and Monitoring Web Ser-
vice Composition. In Proc. AIMSA'04 .

[2] Pistore, M.; Traverso, P.; and Bertoli, P. 2005. Au-
tomated Composition of Web Services by Planning in
Asyncronous Domains. In Proc. ICAPS'05 .

[3] Pistore, M.; Marconi, A.; Bertoli, P.; and Traverso,
P. 2005. Automated Composition of Web Services by
Planning at the Knowledge Level. In Proc. IJCAI'05 .

Step 1 Step 2 Step 3

Step 4 Step 5 Step 6

Step 7 Step 8 Step 9

Fig. 8: The demo

